

Regression Discontinuity Designs in Social Science Research: Causal Inference of Cutoff-based Programs

HyeonJin Yoon, Ph.D. 3/13/2020 Nebraska Methodology Applications

Agenda

- Background
- Rationale & Utility
- RDD Modeling and Analysis
 - Assumptions
 - Graphical, parametric, and nonparametric analyses
- Demonstration
- RDD Limitations
- RDD Extensions
- Conclusion

Causal inference in Social Science Research

- Causal inference of programs, interventions, and policies
 - Interested in answering questions if programs and policies are "effective" in improving outcomes
 - "Can subsidized employment programs help disadvantaged job seekers?"
 - "Can after school programs improve student social- and emotional, behavioral, and academic outcomes?"
- Randomized controlled trials (RCT)—"Gold Standard"
 - Could be neither feasible nor ethical to implement in practice

Regression Discontinuity Designs (RDD)

- A strong alternative to the RCT where a cutoff-based assignment of individuals is used
- Subjects are assigned to either the treatment or control condition based on a cutoff score on an assignment variable
 - Summer school reading programs
 - US minimum legal age of for drinking alcohol is 21
- When treatment is effective, a discontinuity in the regression relationship between assignment variable and outcome variable occurs at the cutoff
 - $Outcome_i = b_0 + b_1 (assignment score_i) + b_2 (treatment_i) + r_i$

Regression Discontinuity Designs (RDD)

RD with no treatment effect

RD with treatment effect

Regression Discontinuity Designs (RDD)

Causal Inference in RDD

- Treatment assignment is completely known and statistically modeled
 - Selection bias is controlled
- Local randomization at the cutoff
 - Participants just above and below the cutoff are assumed to be *identical*, except in terms of the treatment assignment
 - RDD assumptions are critical to prove this
- Produces unbiased causal estimate <u>at the cutoff</u>

Causal Inference in RDD

Causal Estimand of Interest in RDD

The treatment effect is the difference in the potential outcomes at the cutoff:

 $\tau_{ATE(C)} = E[Y_i(1) - Y_i(0) | Z_i = z_c]$ = $E[Y_i(1) | Z_i = z_c] - E[Y_i(0) | Z_i = z_c]$

Advantage & Utility of RDD

- Allows the estimation of *unbiased causal estimates* at the cutoff in the design
 - due to the completely known selection process and local randomization occurring at the cutoff)
 - RDD causal estimates are as robust as those from RCT
- Enables program administrators to target those who are most in need of treatment
- Widely used in social science research evaluating a nonrandom, cut-off based programs and policies

RDD Assumptions

RDD Assumptions

- 1. Treatment assignment is measured and determined by a clearly known rule
 - Unit *i* is assignment to treatment condition if the unit scores below the cutoff (Z_i=1 if X_i < c), condition
 - Unit *i* is assignment to control condition if the unit scores above the cutoff (Z_i=0 if X_i ≥ c)
- 2. No alternative explanations for the treatment effect except through the treatment at the cutoff
 - Evidence of local randomization at the cutoff
 - Covariate balance at the cutoff, continuity of density at the cutoff (no manipulation of the treatment assignment)

RDD Modeling and Analysis

Types of RDD

- Sharp RDD: No non-compliance
- Fuzzy RDD: Non-compliance (no-shows, crossovers)

Steps for RDD Modeling and Analysis

- 1. Assumption tests
- 2. Parametric analysis
- 3. Non-parametric analysis
- 4. Graphical analyses are utilized in steps 1-3
- 5. Examine the results from multiple analyses all together (steps 1-4)

Components of RDD

• What is needed?

Components	Example
Assignment variable	Poverty score (composite)
Outcome variable	State test score
Condition variable	After school program (Yes or No)
Cut-score	25/100

- Assumption # 1: Treatment assignment is measured and determined by a clearly known rule
- Conditional probability of receiving the treatment jumps from 0 to 1 (or vise versa) at the cutoff

- Assumption # 2: No alternative explanations for the treatment effect except through the treatment at the cutoff
- Covariate balance test
 - No discontinuity in the potential outcomes (i.e., covariates)
 - Run a series of RD regressions with the baseline covariates
 - $Cov_i = \beta_0 + \beta_1 Treatment_i + \beta_2 f(Assign)_i + \beta_3 Treatment_i \times f(Assign)_i + \epsilon_i$
 - Create a series of scatterplots for the baseline covariates using nonparametric regression to model the relationship between the assignment variable and the outcome.

Covariate balance plots

- Assumption # 2: No alternative explanations for the treatment effect except through the treatment at the cutoff
- Density test (aka. Sorting test)
 - Evaluates if there is manipulation of the assignment process
 - Assesses significant difference in number of observations at the cutoff
 - No discontinuity in the density of assignment variable at the cutoff
 - McCrary's Density Test (2008)

$$\theta = \ln \lim_{r \downarrow c} f(r) - \ln \lim_{r \uparrow c} f(r) \equiv \ln f^+ - \ln f^-.$$

• θ = log-difference in the height of each density function

• Density test example

Step 2: Parametric Analysis of the RDD

• A simple linear regression

 $Y_i = \alpha + \beta_0 \cdot T_i + \beta_1 \cdot r_i + \varepsilon_i \qquad T = \text{Treatment indicator,} \\ r = \text{Assignment variable}$

- Identify the best fitting model: F-test, AIC, BIC, LRT
- Specification of the correct functional form is the key

Step 2: Parametric Analysis of the RDD

• Specification of the correct functional form is the key

Step 2: Parametric Analysis of the RDD

• Specification of the correct functional form is the key

MAP ACADEMY

Step 3: Nonparametric Analysis of the RDD

- Flexible for accommodating nonlinear relationship
- Local linear/polynomial regression is most commonly used in the literature
 - 1) Identify "<u>optimal bandwidth</u>"—a width of window where regressions are fitted

Step 3: Nonparametric Analysis of the RDD

Local linear/polynomial regression

2) Determine "kernel weights"

Step 3: Nonparametric Analysis of the RDD

• Local linear/polynomial regression

3) Regressions are fitted separately for observations on the left or right side of the cutoff.

.2

.4

х

$$Y_{l} = \alpha_{l} + \beta_{l} (X - c) + \varepsilon,$$

where $c - h \leq X < c,$
$$Y_{r} = \alpha_{r} + \beta_{r} (X - c) + \varepsilon,$$

where $c \leq X \leq c + h.$

0

.8

.6

Step 5: Convergence of Results

 Do the results from graphical, parametric, and nonparametric analyses converge in terms of direction and magnitude of the RD treatment effect?

Demonstration

RDD Analytic Software Packages

- R: <u>rdrobust</u>, <u>rddensity</u>, <u>rdplot</u>, rdd, RDDtools, mgcv (gam), rddapp
- Stata: Ipoly (local polynomial regression), rdrobust,rddensity, rdplot

Dataset

- Simulated dataset
- Treatment: Summer reading program
- Assignment variable: Composite standard score on a CBM reading assessment
- Outcome: State English Language Arts test score
- Cutoff = 0
- Sample: *N* = 810
 - (Treatment *n* = 425, Control *n* = 385)
- R package: rdrobust (Calonico et al., 2015)

Step 0: Explore the Data

• Summary statistics

- > # ::::: summary statistics :::::
- > library(dplyr)
- > read%>%
- + select(posttest, assign, treatment)%>%
- + describe()

	vars	n	mean	sd	median	trimmed	mad	min	max	range
posttest	1	810	207.13	33.13	204.00	206.83	34.10	52.00	308.00	256.00
assign	2	810	-0.02	0.67	-0.03	-0.02	0.63	-2.54	2.14	4.68
stuid	3	810	405.50	233.97	405.50	405.50	300.23	1.00	810.00	809.00

Step 0: Explore the Data

250 200 150 Frequency 10 20 0 -3 -2 -1 0 2 1

Histogram of read\$assign

read\$assign

Step 0: Explore the Data

MAP ACADEMY

• Assignment Rule

::::: check the assignment
variable and assignment rule :::::
plot(read\$assign, read\$treatment,
main = "treatment assignment")
> abline(v = 0, lty = 2)

treatment assignment

Step 3: Assumption Test-Covariate Balance

> summary(rdrobust(read\$lep, read\$assign, all=TRUE))

Call: rdrobust

Number of Obs.	810	
BW type	mserd	
Kernel	Triangular	
VCE method	NN	
Number of Obs.	425	385
Eff. Number of Obs.	186	159
Order est. (p)	1	1
Order bias (q)	2	2
BW est. (h)	0.361	0.361
BW bias (b)	0.638	0.638
rho (h/b)	0.566	0.566
Unique Obs.	422	382

Method	Coef. Std	. Err.	Z	P> z	[95% C.I.]
Conventional	-0.056	0.095	-0.586	0.558	[-0.242 , 0.131]
Bias-Corrected	-0.081	0.095	-0.855	0.392	[-0.268 , 0.105]
Robust	-0.081	0.112	-0.726	0.468	[-0.301 , 0.138]

Step 3: Assumption Test-Covariate Balance

> summary(rdrobust(read\$sped, read\$assign, all=TRUE))
Call: rdrobust

Number of Obs. BW type Kernel VCE method		810 mserd Triangular NN			
Number of Obe		405	205		
Number of Obs.		425	385		
Eff. Number of Obs.		226	197		
Order est. (p)		1	1		
Order bias (q)		2	2		
BW est. (h)		0.449	0.449		
BW bias (b)		0.736	0.736		
rho (h/b)		0.610	0.610		
Unique Obs.		422	382		
Method	Coef.	Std. Err.	Z	P> z	[95% C.I.]
Conventional	a ago	0 057	1 600	<u> </u>	[_0 021 0 205]
Pias Connected	0.002	0.057	1 665	0.110	
DIAS-COLLECTER	0.090	0.007	1.005	0.090	
Robust	0.096	0.067	1.421	0.155	[-0.036 , 0.228]

Step 2: Assumption Test – Sorting Test

> #Sorting Around the Cutoff (McCrary Test)#
> summary(rddensity(X = read\$assign))

RD Manipulation Test using local polynomial density estimation.

Step 3: Parametric Analysis

```
# ::::: parametric analysis :::::
summary(out1.lm <- lm(posttest ~ treatment*assign, data = read))</pre>
                                                                            # linear model
summary(out2.lm <- lm(posttest ~ treatment*(assign + I(assign^2)), data = read)) # quadratic</pre>
summary(out3.lm <- lm(posttest \sim treatment^*(assign + I(assign^2) + I(assign^3)), data = read))
anova(out1.lm, out2.lm, out3.lm)
AIC(out1.lm, out2.lm, out3.lm)
             > anova(out1.lm, out2.lm, out3.lm)
             Analysis of Variance Table
             Model 1: posttest ~ treatment * assign
             Model 2: posttest ~ treatment * (assign + I(assign^2))
             Model 3: posttest ~ treatment * (assign + I(assign^2) + I(assign^3))
                        RSS Df Sum of Sq F Pr(>F)
               Res.Df
             1 806 871233
             2 804 870011 2 1222.7 0.5682 0.56675
             3 802 862818 2 7192.8 3.3429 0.03583 *
             Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
             > AIC(out1.lm, out2.lm, out3.lm)
                    df
                            AIC
             out1.lm 5 7962.991
             out2.1m 7 7965.854
             out3.lm 9 7963.129
```


Step 3: Parametric Analysis

```
# ::::: parametric analysis :::::
summary(out1.lm <- lm(posttest ~ treatment*assign, data = read))</pre>
                                                                            # linear model
summary(out2.lm <- lm(posttest ~ treatment*(assign + I(assign^2)), data = read)) # quadratic</pre>
summary(out3.lm <- lm(posttest \sim treatment^*(assign + I(assign^2) + I(assign^3)), data = read))
anova(out1.lm, out2.lm, out3.lm)
AIC(out1.lm, out2.lm, out3.lm)
             > anova(out1.lm, out2.lm, out3.lm)
             Analysis of Variance Table
             Model 1: posttest ~ treatment * assign
             Model 2: posttest ~ treatment * (assign + I(assign^2))
             Model 3: posttest ~ treatment * (assign + I(assign^2) + I(assign^3))
                        RSS Df Sum of Sq F Pr(>F)
               Res.Df
             1 806 871233
             2 804 870011 2 1222.7 0.5682 0.56675
             3 802 862818 2 7192.8 3.3429 0.03583 *
             Signif. codes: 0 (***' 0.001 (**' 0.01 (*' 0.05 (.' 0.1 (') 1
             > AIC(out1.lm, out2.lm, out3.lm)
                    df
                            AIC
             out1.lm 5 7962.991
             out2.1m 7 7965.854
             out3.lm 9 7963.129
```


Step 3: Parametric Analysis

Parametric Results

```
Call:
lm(formula = posttest \sim treatment * (assign + I(assign^2) + I(assign^3)),
    data = read)
Residuals:
   Min
             10 Median
                             30
                                    Max
                                                                     S
-147.61 -20.95 -2.12
                          21.64 104.66
Coefficients:
                                                                     22
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       197,936
                                    5.135 38.544
                                                    <2e-16 ***
                                                                     8
                                    6.609
                                            2.066
treatment
                        13.653
                                                    0.0392 *
                                                                  posttest
assign
                        64.840
                                   26.688
                                           2.430
                                                    0.0153 *
I(assign^2)
                       -88.490
                                   36.273 -2.440
                                                    0.0149 *
                                                                     ß
I(assign^3)
                                           2.551
                       34.842
                                   13.659
                                                    0.0109 *
treatment:assign
                                   33.536 -1.547
                       -51.882
                                                    0.1222
treatment:I(assign^2) 84.527
                                           1.918
                                                    0.0555 .
                                   44.070
                                                                     8
treatment:I(assign^3) -38.341
                                   15.971 -2.401
                                                    0.0166 *
Signif. codes:
               0 (**** 0.001 (*** 0.01 (** 0.05 (.' 0.1 (')
                                                                              -2
```

Residual standard error: 32.8 on 802 degrees of freedom Multiple R-squared: 0.02849, Adjusted R-squared: 0.02001 F-statistic: 3.36 on 7 and 802 DF, p-value: 0.001541

Step 4: Nonparametric Analysis

```
> # Local Polynomial Regression#
> summary(rdrobust(y = read$posttest, x = read$assign, all = TRUE))
Call: rdrobust
```

Number of Obs. BW type Kernel VCE method	810 mserd Triangular NN	
Number of Obs.	425	385
Eff. Number of Obs.	194	164
Order est. (p)	1	1
Order bias (q)	2	2
BW est. (h)	0.374	0.374
BW bias (b)	0.627	0.627
rho (h/b)	0.595	0.595
Unique Obs.	422	382

Method	Coef. St	td. Err.	Z	P> z	[95% C.I.]
Conventional	-14.469	7.244	-1.997	0.046	[-28.667 , -0.270]
Bias-Corrected	-16.639	7.244	-2.297	0.022	[-30.837 , -2.440]
Robust	-16.639	8.441	-1.971	0.049	[-33.184 , -0.094]

Step 4: Nonparametric Analysis

Step 5: Cross-check the Results

Model	Treatment effect (SE)
Linear regression	4.61 (3.77)
Quadratic regression	6.33 (5.19)
Cubic regression*	13.65 (6.61)*
Local linear regression (conventional)	14.47 (7.24)*
Local linear regression (robust, bias-corrected)	16.65 (8.44)*

Limitations of RD

- Lower statistical power than a comparable RCT
 - Due to the correlation between the treatment status indicator and the assignment variable
 - RD requires a sample size between 2.75 and 4 times greater than that of a comparable RCT to detect the same treatment effects
- Strong reliance on correct modeling of the assignment variableoutcome relationship
 - If researchers modeled a linear function when the true function for the hypothesized relationship is not linear (e.g., curvilinear), they might find an artifactual discontinuity at the cutoff
- Limited generality of causal inference
 - Causal inference in basic RD is limited to the small area surrounding the cutoff

Conclusion

- RDD enables the ethical delivery of programs and policy in social science research.
- RDD yields unbiased causal estimate at the cutoff.
- Assumption tests are crucial.
- RDD requires a large sample.
- Large sample at the cutoff matters.
- Cross-check the results from different types of RD analyses (i.e., parametric, non-parametric, and graphical analyses).

RDD Extensions

- RDD variants to improve generality of RD estimate beyond the cutoff/also improve powers
 - Comparative RDD (using pretest scores or non-equivalent groups)
 - RDD with covariate matching
 - Multiple-cutoff RDD

Questions?

Thank you!

Fuzzy RDD

- Non-compliance!
- Wald Estimator approach

$$LATE_{C} = \frac{\lim_{z \uparrow z_{c}} E[Y_{i} \mid Z_{i} = z_{c}] - \lim_{z \downarrow z_{c}} E[Y_{i} \mid Z_{i} = z_{c}]}{\lim_{z \uparrow z_{c}} E[D_{i} \mid Z_{i} = z_{c}] - \lim_{z \downarrow z_{c}} E[D_{i} \mid Z_{i} = z_{c}]}$$

- Two-state least squares (2SLS) approach
 - First stage: $Treated_i = \beta_0 + \beta_1 Treatment_i + \beta_2 g(AVAR)_i + \varepsilon_i$
 - Second stage: $Y_i = \beta_0 + \beta_1 \mathcal{F}eated_i + \beta_2 f(AVAR)_i + u_i$

